
Formalizing
Polyhedral Geometry

(in Lean 4)



What are polyhedra?

● A halfspace is a set of vectors on one 
side of a hyperplane

● A polyhedron is an intersection of 
finitely many halfspaces. 

● A polytope is a bounded polyhedron. 



Our Project

● Focused on 
○ Establishing basic definitions

■ Halfspaces
■ Polyhedra
■ Cones
■ Conical and convex hulls

○ Formalizing introductory theorems
■ Convexity of halfspaces and polyhedra
■ Carathéodory’s theorem

   https://github.com/uw-math-ai/lean-polyhedral-geometry

https://github.com/uw-math-ai/lean-polyhedral-geometry


Formalizing is Hard

● Written proofs often leave out “intuitive” details
○ Implicit induction

■ “Minimal element” proofs
■ Induction upon non-trivial types like cardinalities

○ “Letting things go to infinity”
○ Implicit inclusion of non trivial facts:

■ Boundness requires a “bornology”
■ Hopping between a particular basis and being basis agnostic

○ Notion of Finite
■ Finite vs. Finset
■ Finsets have a cardinality of type natural number, while sets have a 

special cardinality type
● Need coercion to apply theorems 



Formalizing is Hard (cont’d)

● Mathlib theorems are often not immediately compatible 
with our situation and frequently require “massaging” or 
rephrasing of our definitions to apply nicely

● Difficult to build the “most general” definition of our math 
objects

○ Type vs. Type* 
○ Indexing via natural numbers vs. an arbitrary finite set

● Difficult to choose between structures and predicates for 
our math objects



A Few Definitions

def Halfspace (s : Set V) : Prop :=

  ∃ (f : V →ₗ[ℝ] ℝ) (c : ℝ), s = { x | f x ≤ c }

def Polyhedron (s : Set V) : Prop :=

  ∃ (I : Type) (H : I → Set V), Finite I ∧ (∀ i : I, Halfspace   

  (H i)) ∧ s = ⋂ (i : I), H i

def conicalHull (s : Set V) : Set V :=

  { x | ∃ (t : Finset V) (a : V → ℝ),

  (∀ v ∈ t, 0 ≤ a v) ∧ ↑t ⊆ s ∧ x = ∑ v ∈ t, a v • v }



Carathéodory’s Theorem
theorem caratheordory (s : Set V) (x : V) (h : x ∈ conicalHull s) :

  ∃ (t : Finset V), ↑t ⊆ s ∧ t.card ≤ Module.finrank ℝ V ∧ x ∈ conicalHull 
t

Proof Outline: 
● Since x ∈ conicalHull s, there exists a conical combination x = ∑ v ∈ t, a v • v

● If t.card less than dimension of the vector space, we are done

● Otherwise, pick a minimal set of vectors t which form a conical combination of x

● Since t.card is greater than the dimension of the vector space, we can remove one of the 
vectors from the conical combination using linear dependence

○ This is tricky, since we must always have the scalar multiples be positive. (Harder than 
showing you can removing a vector from span).

● This is a contradiction since we picked the smallest set of vectors



theorem caratheordory (s : Set V) (x : V) (h : x ∈ conicalHull s) :

  ∃ (t : Finset V), ↑t ⊆ s ∧ t.card ≤ Module.finrank ℝ V ∧ x ∈ conicalHull t := by

  rcases min_elt (conicalCombo_cards s x) (conicalCombo_cards_nonempty s x h) with ⟨n, h', h_minimality⟩
  rcases h' with ⟨t, ⟨a, h_a_nonneg, h_t_subset, h_x_combo⟩, rfl⟩
  rcases le_or_gt t.card (Module.finrank ℝ V) with h_t_card | h_t_card

  . use t, h_t_subset, h_t_card, t, a

  apply False.elim

  have := reduce_by_one t a x h_a_nonneg h_x_combo h_t_card

  rcases this with ⟨t',a',t'_le_t,t'_sub_t,a'_nonneg,t'_x_conic_combo⟩
  have t'_subset_s : ↑t' ⊆ s := by

have : (↑t' : Set V) ⊆ (t : Set V) := by

  exact t'_sub_t

apply subset_trans this h_t_subset

  have t'_is_in_conicalCombos : t'.card ∈ conicalCombo_cards s x := by

use t'

use ⟨a',a'_nonneg,t'_subset_s,t'_x_conic_combo⟩
  have := h_minimality t'.card t'_le_t

  show False

  exact this t'_is_in_conicalCombos



Sources

● Polyhedral Combinatorics by Gaku Liu, 
https://drive.google.com/file/d/1TRg7iQ0RpIRteF2IUiKIe3E-YagVnkH0/view 

● Lean 4 Index, https://leanprover-community.github.io/mathlib4_docs/ 

● Theorem Proving in Lean, 
https://leanprover.github.io/theorem_proving_in_lean4/

https://drive.google.com/file/d/1TRg7iQ0RpIRteF2IUiKIe3E-YagVnkH0/view
https://leanprover-community.github.io/mathlib4_docs/
https://leanprover.github.io/theorem_proving_in_lean4/

